翻訳と辞書
Words near each other
・ Iwiczno
・ Iwie
・ Iwiec
・ Iwierzyce
・ Iwig
・ Iwiji
・ Iwikau Te Heuheu Tukino III
・ Iwikauikaua
・ Iwasaki Castle
・ Iwasaki Tsunemasa
・ Iwasaki Yanosuke
・ Iwasaki Yatarō
・ Iwasaki's snail-eater
・ Iwasaki, Aomori
・ Iwasawa
Iwasawa algebra
・ Iwasawa conjecture
・ Iwasawa decomposition
・ Iwasawa group
・ Iwasawa manifold
・ Iwasawa Station
・ Iwasawa theory
・ Iwase
・ Iwase (surname)
・ Iwase Dam
・ Iwase District, Fukushima
・ Iwase Province
・ Iwase Station
・ Iwase, Fukushima
・ Iwase, Ibaraki


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Iwasawa algebra : ウィキペディア英語版
Iwasawa algebra
In mathematics, the Iwasawa algebra Λ(''G'') of a profinite group ''G'' is a variation of the group ring of ''G'' with ''p''-adic coefficients that take the topology of ''G'' into account. More precisely, Λ(''G'') is the inverse limit of the group rings Z''p''(''G''/''H'') as ''H''  runs through the open normal subgroups of ''G''. Commutative Iwasawa algebras were introduced by in his study of Z''p'' extensions in Iwasawa theory, and non-commutative Iwasawa algebras of compact ''p''-adic analytic groups were introduced by .
==Iwasawa algebra of the ''p''-adic integers==

In the special case when the profinite group ''G'' is isomorphic to the additive group of the ring of ''p''-adic integers Z''p'', the Iwasawa algebra Λ(''G'') is isomorphic to the ring of the formal power series Z''p''[[''T'']] in one variable over Z''p''. The isomorphism is given by identifying 1 + ''T'' with a topological generator of ''G''. This ring is a 2-dimensional complete Noetherian regular local ring, and in particular a unique factorization domain.
It follows from the Weierstrass preparation theorem for formal power series over a complete local ring that the prime ideals of this ring are as follows:
*Height 0: the zero ideal.
*Height 1: the ideal (''p''), and the ideals generated by irreducible distinguished polynomials (polynomials with leading coefficient 1 and all other coefficients divisible by ''p'').
*Height 2: the maximal ideal (''p'',''T'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Iwasawa algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.